10/31/13

developerWorks Technical topics Mobile development Technical library

Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

Magetta means mockup, Part 3: Deploy your
Magetta Ul prototype with PhoneGap

Use PhoneGap to deploy a Maqgetta Ul prototype to any mobile device

So far in this series introducing Magetta, you've learned how to create and enrich an interactive mobile Ul prototype using

features from the Dojo and Dojo Mobile toolkits. Working in your browser with Magetta, you were able to build a believable
prototype without writing any code, then augment its features and flow with custom JavaScript. Now it's time to combine

Magetta with PhoneGap in order to create and deploy a new mobile Ul prototype onto actual devices.

Tony Erwin is a Software Engineer in IBM's Emerging Intemet Technologies group and a core member of the Magetta development team. Tony has
been with IBM since 1998 and has extensive Ul design and development experience using a wide variety of technologies and toolkits. Before joining
IBM, Tony earned an MS in Computer Science from Indiana University and a BS in Computer Science from Rose-Hulman Institute of Technology.

06 June 2013
Also available in

Introduction

Combining Magetta and PhoneGap results in a powerful platform for
quickly prototyping, developing, and deploying mobile applications.
In this final article in the series, we'll build a new application
prototype from scratch, taking a Magetta mobile application from
implementation to deployment. The example application for this
article will be a mobile GPS locator app, whose purpose is to allow a
user to see his or her current position on a map. First, we'll
construct a Ul prototype in the Magetta page editor without writing
any code (as we did in Part 1). Then, we'll add some JavaScript that
enriches the prototype with more interactive features (as we did in
Part 2). We'll then add a new layer to our JavaScript that will enable
us to leverage features from PhoneGap's Geolocation API.

Once the prototype is fully developed, we'll test the location feature
with the Ripple Emulator extension for Google Chrome and use the

About this series
This series shows you how to use Magetta

to prototype HTML5 user interfaces.

In Part 1, learn about Maqgetta's major
features while creating a prototype for a
rich mobile application.

In Part 2, take your prototype application
to the next level by writing custom
JavaScript to add interactive
functionality.

In Part 3, use PhoneGap to turn a
Magetta-generated mobile prototype into
a native app that is ready to deploy to
actual devices.

Learn more about using Maqgetta by
reading on developerWorks.

Adobe PhoneGap Build service to turn our Maqgetta-produced GPS locator into a native app. We'll
conclude by testing the GPS locator's functionality with the Android Emulator, which is part of the Android

SDK.

Build on what you know

If you've followed along with this series from the beginning, building and enriching the GPS locator
prototype should be a snap — and a good opportunity to cement what you've already learned about
Magqetta. If you already have a mobile application in Magetta that you simply want to build with PhoneGap
and deploy to a mobile device, then you can skip ahead to "Export the app to PhoneGap."

Construct the GPS Locator prototype

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

1/31

http://www.ibm.com/developerworks/web/library/mo-maqetta-1/index.html
http://www.ibm.com/developerworks/web/library/mo-maqetta-2/index.html
https://www.ibm.com/developerworks/mydeveloperworks/blogs/MaqettaAuthoring/?lang=en
http://www.ibm.com/developerworks/ru/library/mo-maqetta-3/
http://www.ibm.com/developerworks/jp/mobile/library/mo-maqetta-3/
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/index.html
http://www.ibm.com/developerworks/web/library/mo-maqetta-2/index.html
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/topics/
http://www.ibm.com/developerworks/mobile/
http://www.ibm.com/developerworks/mobile/library/

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta Ul prototype with PhoneGap
Ouir first step is to build the GPS locator Ul prototype. The GPS locator will allow users to see their
geographic position on a map, switch the style of map, view their current latitude and longitude, and press
a button to update to a new position.

Just as we did in Part 1, we'll start by creating a new project in Magetta and building an HTML file:

1. Log in to the Magetta server at Magettia.org. (This step presumes that you have registered as a user
on the Magetta website.)

2. Create a new project by choosing the Create > Project... menu option. Enter "gpsLocator" for your
project name, and click the Create button.

3. Create a new mobile application in the new project by choosing the Create > Mobile Application...
menu option. Enter "index.html" as your file name (it's the name required by PhoneGap), and click the
Create button.

Start with the view
The first step to designing the Ul is to create the view, which for this application will be implemented using

a Dojo Mobile ScrollableView widget.

1. Drag and drop a ScrollableView widget from the Views section of the widget palette into the middle
of the Magetta device silhouette. (If you have trouble finding a widget, you can type its name into the
search box at the top of the widget palette.)

2. In the Properties palette, change the ID of the new view to mainView.

Add a segmented tab bar
Next, we'll create a segmented tab bar that the user will be able to use to change the type of map that he

or she sees.
1. Drag and drop a TabBar widget from the Controls > Toolbars, ButtonBars section of the widget
palette on top of the current view.
2. Change the value in the text box to "Road, Satellite, Hybrid" (as shown in Figure 1) and hit OK.
Figure 1. Create the TabBar widget

a

® &>

‘J Road,Satellite, Hybrid|

I @ oK | | Cancel |

3. In the Widget section of the Properties palette, change barType to segmentedControl and fixed to
top as shown in Figure 2.
Figure 2. TabBar properties

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

2/31

http://www.maqetta.org/

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

| Widget
| for: TabBar | Evenls
class!
‘ = | Layout
D
e Padding
lconBase: Margins
lconFos:
barTypa:| segmentedControl = | Background
fixed: | top
' Border
Fonts/Text
SVG

4. Select the first button in the TabBar, which is labeled "Road." In the Properties palette, change the ID

to roadButton and remove the icon strings in the iconl and icon2 attributes (as shown in Figure 3).
Figure 3. TabBarButton properties

Widget
| for: TabBarButton #roadButfon | Evenis
e _ ‘ Layout
10 | roadButtan
i Padding
transtion: | Margins
transitionDir 1
coni: Background
Pne Border
onPost:
icanPas2: Fonts/Text
moveTa: f
nret: SVG
hretTarget:
callback:
lapel: Road
badge:
selected: @

5. Select the second button in the TabBar, which is labeled "Satellite." In the Properties palette, change
the ID to satelliteButton and remove the icon strings in the iconl and icon2 attributes.

6. Select the third button in the TabBar, labeled "Hybrid." In the Properties palette, change the ID to
hybridButton and remove the icon strings in the iconl and icon2 attributes.

After completing these steps, your tabbed bar should look like the screenshot in Figure 4.
Figure 4. The final TabBar

Create the map display

Next, we'll set up a placeholder component for our GPS locator map. The map will ultimately show
application users where they are located.

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

3/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

1. Drag and drop a RoundRect widget from the Containers > Dojo section of the widget palette on top of
the current view below the TabBar.

2. Open the HTML section of the widget palette, which shows several sections for the many HTML5
elements that Magetta makes available to designers (see Figure 5).
Figure 5. HTML widgets

og

oo
Palette

Views
0= = Heading
Outline = |igte

Controls

[El] containers

HTML
D Comimon
B2 Forms
H1 Headers
@ Images, Media, lframes

¢ &

<audio= <gmbed= <img=>
Elgl-
<iframe> <video>

Paragraphs, Breaks, Rules
f Tables

3. From the Images, Media, Iframes sub-section, drag and drop an widget onto the RoundRect,
making it a child element of the rectangle.

4. In the "Select a source" dialog that comes up, copy and paste the URL from Listing 1 into the File URL
field and click OK. This URL uses the Google Static Maps API to retrieve a map centered on IBM
Corporate Headquarters.

Listing 1. The map URL (copy and paste as a single line)

http://maps.googleapis.com/maps/api/staticmap?
markers=41.108556,-73.720729&zoom=13&si1ze=284x216
&sensor=false&scale=2

5. In the Layout section of Properties palette, change width to 100% and height to 44%.
6. Change the ID of the to mapImg.

After completing these steps, your map image should look similar to Figure 6.

Figure 6. Map image

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 4/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

%®
Whippoonwill
Ridge Park

Add latitude and longitude
We'll need to add another widget to display the current latitude and longitude reflected in our map:

1. From the Lists section of the widget palette, drag and drop a RoundRectList below the RoundRect in
your view. Enter "Latitude" on one line and "Longitude" on the next line (as shown in Figure 7), then
click OK.

Figure 7. RoundRectList

Road ‘
ﬁ—’o & 1;‘9\
— Whippoanwill

. Ridge Park

= .

& <
s

L +

fom
O Map data ©2012 Google
., -
Latitude
Longitude|
@ [ok || cancel |’

2. Select the first list item, labeled "Latitude." In the Widget section of the Properties palette, change the
ID to latitudelListItemand rightText to "41.108556" (the latitude value that was in the URL we put

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 5/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

in the map image). After doing so, your list item should look like it does in Figure 8.
Figure 8. Latitude list item

*
Whippoonwill
Ridge Park

/' Nichals™
o' Preserve

Map data ©2012 Google |

41.108556

3. Now select the second list item labeled "Longitude." Change the item's ID to longitudelListItem and
its rightText to "73.720729" (the longitude in the map image URL).

Location updates
Finally, let's complete the view by adding a button that will allow the user to update his or her location on
the map:

1. Drag and drop a RoundRect from the Containers > Dojo section of the widget palette onto the view
underneath the RoundRectList.

2. Drag and drop a Button from the Controls > Buttons section of the widget palette onto the
RoundRect. Enter "Update Location" into the text box (as shown in Figure 9) and hit OK.
Figure 9. Adding the Update Location button

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 6/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

Whippoonwill
Ridge Park
3
&

&
e
o

o X

—
(22
Oi.lj

4

(5T |
; . Map data £2012 Google

o
&

)

o

Latitude 41.108556

Longitude 73.720729

@ -

Buiton |
Update I.ocation

@ | oK | | Cancel |

3. In the Properties palette, change the ID of the new button to updatelLocationButton.

Preview the prototype
At this point, we've built a nice mockup without writing any code. You should run the live preview to check

it out. Recall from Part 1 and Part 2 that you can run a live preview of any Magetta prototype by clicking
the Preview in Browser icon in the Magetta toolbar. When you do that with the GPS locator, you'll see a
new browser tab containing something like the screenshot in Figure 10.

Figure 10. Live preview of the GPS locator app

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

7/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

Device: iphone | Zoom: | " Angle: [@

s=Map data ©2012 Google

Latitude 41.108556

Longitude 73.720729

Update Location |

Assuming that your prototype looks as good as mine, what we have is sufficient, at least for getting
feedback from potential users. Note the shortcomings in the Ul interaction, however:

The initial position (location on a map) is hard-coded and has nothing to do with the user's actual
position.

Clicking on the Road, Satellite, or Hybrid buttons does not change the map type.

Clicking on the Update Location button does not change the latitude or longitude list items; coordinates
shown on the map remain the same.

Changing the orientation of the device silhouette results in a distorted map. This is because the URL
sent to Google has a hard-coded size, and the element dimensions change according to device
orientation.

Just as we did in Part 2 of this series, we'll add some custom JavaScript to correct these limitations and
improve the interactivity of the GPS locator prototype.

Enrich the app with JavaScript

Hopefully you've already had some experience (perhaps in) with working in a Magetta prototype's
app.js file, adding custom JavaScript to enhance a Ul's interactivity. In that case, the steps in this
section will confirm much of what you already know. Follow along by copying and pasting the individual

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 8/31

http://www.ibm.com/developerworks/web/library/mo-maqetta-2/index.html

10/31/13

Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

JavaScript code snippets here into your own app. js file. Many of the code snippets represent testable
enhancements to the app, so I'll prompt you to preview the application changes as we go along. If you
prefer a faster track, you can just download the final version of my app.js and replace yours with it in the
Maqgetta workspace.

Required modules

As in Part 2, we'll start by specifying the Dojo modules that we're going to need. To accomplish this,
replace your app. js with the code in Listing 2. (Recall that you can open app. js by double-clicking it in
the Files palette.)

Listing 2. Specifying Dojo modules

/*

* This file is provided for custom JavaScript logic that your HTML files might need.
* Magetta includes this JavaScript file by default within HTML pages authored in

* Magetta.
*/

require(["dojo/ready",
"dojo/dom",
"dojo/dom-style",
"dijit/registry",
"dojo/on",
"dojo/aspect"],
function(ready, dom, domStyle, registry, on, aspect){
ready (function(){
// logic that requires that Dojo is fully initialized should go here

)
I

The above code loads the following modules:

Referencing widgets

Next we need to get references to all of the widgets we're going to interact with in our code. As shown in
Listing 3, we'll use registry.byld to reference Dojo widgets and dom.byId for the DOM element —,
which is the element holding our map. We'll also insert an if block to ensure that all of the widgets
were found. If not all widgets were found, we'll get an alert message that will make it easier to discover
and correct the problem.

Listing 3. Widget references

[KKK KK KKK K KK KK K KK KK KK K KK KK KKK K K K KKK K K K KKK K K K K

* Get a reference to all the widgets and DOM
* elements we need,
***/

var
var
var
var
var
var
var
var

mainView = registry.byId("mainView");

roadButton = registry.byId("roadButton");

satelliteButton = registry.byId("satelliteButton");
hybridButton = registry.byId("hybridButton");
updatelocationButton = registry.bylId("updateLocationButton");
latitudeListItem = registry.byId("latitudeListItem");
longitudelListItem = registry.byId("longitudelListItem");
mapImg = dom.byId("mapImg");

// Make sure we found all of the widgets
if (!mainView ||

!roadButton ||
!satelliteButton ||
'hybridButton ||

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 9/31

http://dojotoolkit.org/reference-guide/1.8/dojo/ready.html
https://dojotoolkit.org/reference-guide/1.8/dojo/dom.html
https://dojotoolkit.org/reference-guide/1.8/dojo/dom-style.html
https://dojotoolkit.org/reference-guide/1.8/dijit/registry.html
https://dojotoolkit.org/reference-guide/1.8/dojo/on.html
https://dojotoolkit.org/reference-guide/1.8/dojo/aspect.html

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

lupdatelocationButton ||
!lTatitudeListItem ||
!longitudelListItem ||
'mapImg) {

// Trace out an error to make it easier to figure out

// which widget(s) could not be found

alert("could not find at least one of the widgets:\n" +
"\t mainView = " + mainView + ",\n" +
"\t roadButton = " + roadButton + ", \n" +
"\t satelliteButton = " + satelliteButton + ", ,\n" +
"\t hybridButton = " + hybridButton + ",\n" +
"\t updatelocationButton = " + updatelLocationButton + " ,\n" +
"\t latitudeListItem = " + latitudelListItem + " ,\n" +
"\t longitudelListItem = " + TlongitudelListItem + ",6\n" +
"\t mapImg = " + mapImg)

// return, so don't run any other JavaScript
return;

}

You can copy and paste this code immediately inside of the ready function in your app.js file. You can
then save the file and preview the app to make sure that all of the widgets were found.

Add a map data placeholder

Next, in Listing 4, we define a variable called mapData. This will act as a placeholder for the map data that
is required to build a URL, which will be used to retrieve a map. We'll initially populate this placeholder with
default data, but as the user interacts with the app, we'll change its data and use it to populate the
widgets on the page. You may notice that 1atitude and longitude are set to undefined because we
don't yet know the user's initial position. Go ahead and add this code to your app. js file; just note that
the prototype's behavior won't change in the preview.

Listing 4. Map data

[KRR KKK KK KKK K K KK KK KKK KK KK K KK K K K KK KKK KK KK K KK KK K K K K K K

* Initialize our placeholder for all of the map data
* we want to pass to Google.
**/
var mapData = {

latitude: undefined,

longitude: undefined,

zoom: 13,

width: 284,

height: 216,

sensor: false,

scale: 2,

mapType: "roadmap"

}

Build the map URL

Next we'll define a function called getMapUr1 that builds a URL using the Google Static Maps API (see
Listing 5). The getMapUr1 function uses mapData to fill in the required parameters for a given URL.
Before building the URL, it checks to see if the user's latitude and longitude have been set. If not, it will
default the location coordinates to 0, 0 (with a zoom level of 1), so we'll build a URL to retrieve a zoomed-
out world map. Seen on a display, this setting will give the user an indication that we don't know his or her
actual position yet.

Listing 5. Get map URL

[KKK K KKK KR KKK K K KKK K K KKK K KKK K KKK K K KKK K R KKK K K KKK K K KK K K

* Function to build the Google url for the map we
* want to retrieve. It fills in the url parameters
* based on data in our "mapData" variable.
**/
var getMapUrl = function() {
// If we don't have a valid latitude/longitude, set up
// parms to get a world map centered at 0, 0 with zoom
// level of 1.
var latitude = mapData.latitude ? mapData.latitude : 0;
var longitude = mapData.longitude ? mapData.longitude : 0;
var zoom = mapData.latitude ? mapData.zoom : 1;

// Build the url

var url =
"http://maps.googleapis.com/maps/api/staticmap?" +
"markers=" + latitude + "," + longitude + "&" +

"zoom=" + zoom + "&" +
"size=" + mapData.width + "x" + mapData.height + "&" +

10/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

"sensor=" + mapData.sensor + "&" +
"scale=" + mapData.scale + "&" +
"maptype=" + mapData.mapType;

return url;

b

We're not calling this function yet, so when you add it to app.js, there will be no change in the behavior
of the prototype.

Update the widgets

Next, we'll put in place a function called updateWidgets (see Listing 6). When it's called, it refreshes the
contents of the widgets on the page. It first uses getMapUr1l and sets the src of the mapImg with the
result. It then updates latitudelListItem and longitudelistItem with the latitude and longitude
values in mapData. If the latitude and longitude haven't been set, a placeholder ("--") will be displayed in
each of the list items.

Listing 6. Function for updating widgets

[KKK KKK KK K KK KK K KK KK KKK KK KK K KK KK K KK KK K KK KK KKK KK KK KK K K X

* Function to updateWidgets on the page based on the

* current mapData.
**/

var updateWidgets = function() {
//Get the map URL and update the image
var url = getMapUrl();
mapImg.src = url;

//Update the latitude on the display
var latitudeString =

mapData.latitude ? mapData.latitude.toFixed(6) : "--";
latitudeListItem.set("rightText", latitudeString)

//Update the longitude on the display
var longitudeString =
mapData.longitude ? mapData.longitude.toFixed(6) : "--";
longitudelListItem.set("rightText", longitudeString)
b

Update app. js with this code snippet, but again there will be no change in the behavior of the preview.

Button handlers for map type

One of the current limitations to the prototype is that clicking the Road, Satellite, or Hybrid buttons has
no effect. Our previous changes to the prototype's JavaScript enable us to fix this issue in a
straightforward manner. In Listing 7, we register a function to be called when any one of the three buttons
is clicked. In each handler, we then set the mapType in mapData to the appropriate value. Finally, we call
the updateWidgets function that was described in the previous section.

Listing 7. Button handlers

[KRR KKK KK KK KK K KK KK KKK KK KK K KK R K K KK KKK KK KK K KK KK K K K K K K X

* Handle buttons in segmented tab control
**/
// Change the mapType and update widgets when roadButton is clicked
on(roadButton, "click", function() {
mapData.mapType = "roadmap";
updateWidgets();
)

// Change the mapType and update widgets when satelliteButton is clicked
on(satelliteButton, "click", function() {

mapData.mapType = "satellite";

updateWidgets();
IO
// Change the mapType and update widgets when hybridButton is clicked
on(hybridButton, "click", function() {

mapData.mapType = "hybrid";

updateWidgets();
)

When you update app. js with the code in Listing 7, you should see a clear change in the behavior of the
prototype. The initial display will still contain the map of IBM Corporate Headquarters (we'll fix this shortly).
But, when you click on any of the three buttons, a new map URL will be built using the mapType for the

11/31

10/31/13

Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

clicked button. Since we haven't set the user's latitude and longitude, the URL will automatically retrieve
the zoomed-out world view. Figure 11, for example, shows the world map that results from clicking the

Satellite
(Il__")-

button. Note also that the latitude and longitude list items have been filled in with a placeholder

Figure 11. Changing the map type

Device: iphone

0123

Zoom Angle: [©

Latitude

Longitude

Update Location

Q

Changing image dimensions

Another limitation to the original prototype is the distortion in the map image when the dimensions of
mapImg are changed (such as when device type or orientation is changed). This happens because the
URL used to retrieve the map requires the image height and width in pixels. We obviously don't know
those values for all devices and orientations, so how should we fix this?

Listing 8 demonstrates a solution that involves using aspect.after to cause a function to run after
mainView's resize function has been called. In the function specified, we use domStyle.get to get the
calculated width and height of mapImg and put the updated values back into mapData. We then call
updateWidgets, which ultimately causes a new URL to be built and set on mapImg.

Listing 8. Handling resize events

*
*
*
*

*

3k sk ok ok ok ok ok ok K K Kk ok ok ok ok ok ok K K K ok ok ok ok ok ok K ok K R ok ok ok ok ok ok K K Kk ok ok ok Ok K K X

Let's monitor changes in the dimensions of our
mainView (such that might occur during a change in
orientation). This will allow us to get the new
dimensions of our mapImg and allow us to make a
new request for the right sized map.

KK KKK K K KKK K K KKK K K KKK K K KKK K KKK K K KKK KR KKK KK KKK K KKK KX KKK [

aspect.after(mainView, "resize", function() {

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 12/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

// Update map data based on actual width/height of mapImg
mapData.width = Math.round(domStyle.get(mapImg, "width"));
mapData.height = Math.round(domStyle.get(mapImg, "height"));

// mapData has been changed, so update the widgets
updateWidgets();
)

Now update app.js and preview the app. Because an initial resize occurs up front, updateWidgets will
be called right away and we'll see the world map immediately. If you change the orientation of the device,
the map image will reload with the right size, thus eliminating distortion. Note, however, that after the
orientation changes you will now need to scroll to see the Update button. You could fix this by refining the
resize handler to change the height of mapImg, so that everything would fit without scrolling.

Figure 12. A more seamless orientation change

Device: | iphona Zoom: =l Angle: |5

Latitude

Longitude

N

With that, we've updated our prototype, using custom JavaScript to make some of its key features more
responsive to user input. So far everything we've done reflects what you probably already learned in Part
1 and Part 2 of this series. In the next section, we'll start incorporating new functionality that will enable us
to work with PhoneGap APls.

PhoneGap and Magetta

An important feature of the GPS locator is the ability to update the location shown on a map based on the
user's physical location. We also ultimately want to turn this prototype into a native mobile application built
with PhoneGap. When the app is running natively on a device, we'll have access to all of the PhoneGap
APIs. These APls make it possible to access native services of mobile devices (such as location,
accelerometer, and camera) via a common JavaScript layer. We'll be specifically using PhoneGap's
Geolocation API, which conforms to the W3C Geolocation API specification. The desktop browsers
supported by Magetta — Chrome, Firefox, and Safari — all implement this spec. As a result, when we
write our code, we'll be able to access the user's physical location in the Magetta previewer, even though
PhoneGap will not be present.

With that background in mind, let's turn our attention to the updateCurrentPosition function in Listing
9. The first thing we'll do is disable the Update Location button. We do this because it can sometimes
take a bit of time to acquire a device's GPS position, and we don't really want the user clicking the button
multiple times. Then, we invoke navigator.geolocation.getCurrentPosition from the Geolocation
API. This function works asynchronously, so we need to pass in a function that will get called when the
location is determined. The function we pass in is onGetPositionSuccess (we also pass in
onGetPositionError, which will be called if an error occurs).

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 13/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

When onGetPositionSuccess is called, it receives a Pos1ition object with all sorts of information about

the user's location — aside from latitude and longitude, it also contains information about altitude,

heading, speed, and more. We simply update the 1atitude and longitude variables in mapData and
then call the updateWidgets function to refresh the display. We also re-enable the Update Location

button, because it's now safe for the user to make another request.

We don't have any code (yet) that invokes updateCurrentPosition. So, after updating app.js with the
code below, there will be no change to the app's preview behavior.

Listing 9. Getting the map position

[KKK KKK KR KKK K K KKK K K KKK K KKK K KKK K K KKK K K KKK K K KKK K K KK K K

* Callback function when GPS successfully acquired from

* PhoneGap API (specified in "updateCurrentPosition"

* function below). It accepts a "Position’ object, which

* contains the current GPS coordinates/

**/

var onGetPositionSuccess = function(position) {

mapData.latitude = position.coords.latitude;
mapData.longitude = position.coords.longitude;

// mapData has been changed, so update the widgets
updateWidgets();

// Re-enable updatelLocationButton
updatelocationButton.set("disabled", false);

/* % %k 3k ok k ok ok k ok k ok k ok ok k k %k k %k %k %k ok k ok Kk K K K K K XK K XK K K K K K K K 3k Kk K ok ok ok ok ok ok %
* Callback function when GPS acquisition fails using
* PhoneGap API (specified in "updateCurrentPosition"
* function below). It accepts a PositionError object
* containing information on the failure.
**/
var onGetPositionError = function(error) {
//Show an alert with the error
alert('geolocation failure! code: ' + error.code + '\n'
'message: ' + error.message + '\n');

// Re-enable updatelocationButton
updatelocationButton.set("disabled", false);

/* ¥ %k 3k %k k kK k ok k ok ok k k ok k %k %k %k %k %k ok k ok kK K K K K K XK K XK K K K K K K K K Kk Kk k kK k ok %
* Function used to get the new GPS position based on

* the environment we're running in (PhoneGap or not).

* Widgets will be updated one the GPS position is

* acquired.
**/

var updateCurrentPosition = function() {

if(navigator.geolocation &% navigator.geolocation.getCurrentPosition){
// Disable update location button while we're getting location

updatelocationButton.set("disabled", true);

// Geolocation services are available so request the
// position. The geolocation API is asynchronous, so
// we have to rely on a callback function.
navigator.geolocation.getCurrentPosition(

onGetPositionSuccess, //function to call when GPS location acquired
onGetPositionError, //function to call if location cannot be acquired
{ enableHighAccuracy: true }); //added for Android simulator quirk

} else {
// We don't have geolocation services, so show an alert
alert("Geolocation services are not available!");

b

Update Location button handler
We're now set up to rather easily respond to clicks of the Update Location button
register a handler that simply calls the updateCurrentPosition function from the previous section.

Listing 10. Handling the Update Location button

[KKK KKK KK K KK KK K KK KK KK K KK K K K KK KK KKK KK K K KKK K KK KK KK KK K K K X

* Initiate update of the current position when
* updatelocationButton is clicked
**/
on(updatelocationButton, "click", function() {
updateCurrentPosition();

)

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

. In Listing 10, we

At this point, you can update app.js and preview the app. Now, if you click the Update Location button,

14/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

the button will gray out and your browser will ask you if you want to grant permission for the application to
have access to your location.

Figure 13. Update Location browser prompt

Would you like o share your location with
localhost?

' Learn More. .. Share Location v
[

Latitude

Longitude

Update Location

A _4

Then, if you choose to the share your location, the asynchronous call to the onGetPositionSuccess

callback function will be made, causing an update to the information on the display with your retrieved
location (see Figure 14). In addition, the Update Location button is re-enabled.

Figure 14. Updated Location in Maqgetta Preview

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 15/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

= 01 2 3 -
Device: iphone Zoom: Angle: (&

- -
-~
#
#

- Arbor Glen
4151 St NW

2

'y
Woodside
Park
Map data £2012 Gopgle.

CoRd4 Valley
g,
L+
%

Latitude 44.058633

Longitude -92.507393

Update Location |

_

Device initialization

We've implemented the bulk of the prototype's functionality. The one major thing we're still missing is the
ability to initialize the user's position without requiring him or her to press the Update Location button. In
order to get the user's current position, we need to be able to call PhoneGap APIs. But before we can
safely call PhoneGap APIs we need to know when the device is "ready." While we want to run our app
natively on mobile devices, we'd also like to be able to continue to run in the Maqgetta previewer for easier
design and prototyping.

As you saw in the Maqetta previewer, the browser environment is ready by default, and we can
immediately call the Geolocation API. When running in a PhoneGap environment, however, we need to
listen for a special event that signals device readiness. So, for the remainder of this section, we'll focus on
writing some JavaScript that will allow us to do the following:

1. Check whether PhoneGap is present
2. Use that result to check whether the device is ready
3. Once the device is ready, initialize the user's position

Device readiness and initialization
First, let's define two functions (in Listing 11) that we'll use to facilitate initialization. The first,
beforeDeviceReady, sets up the widgets and disables the Update Location button. We'll call this as a

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 16/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

first step before the device is ready. We'll call the second function, onDeviceReady, immediately after we
determine that the device is ready. The onDeviceReady function will then call updateCurrentPosition
to automatically get the location on the user's behalf. Add these functions to your app.js now, but note
that there will be no change in the preview.

Listing 11. Initialization functions

[KRR KKK KK KK KK K KK KK KKK KK KK K KK K K K KK KKK KK KK K KK KK KK KK K K K

* Function to do some initialization prior to the device
* being ready.
**/
var beforeDeviceReady = function() {
// Update widgets with the default values
updateWidgets();

// updatelocationButton disabled until device ready
updatelocationButton.set("disabled", true);

}

[KKK KKK KK K KKK K K KK KK KK K KK KK K KK KK KKK KK K K KKK K KK KK KK KK K K K X

* Function to be called when the device is ready and
* we can safely try to get location, etc.
**/
var onDeviceReady = function() {
// Get the initial position
updateCurrentPosition();

}

Next, we'll define the isPhoneGap function, which will help us test whether or not we're in a PhoneGap
environment (see Listing 12). Knowing which environment we're in will help us decide how best to
determine readiness. Unfortunately, there's not a general consensus about the best way to run an
environment check, and the most foolproof approaches are rather complicated. The implementation
below should work well enough for our prototype, however. Add the following function to app. js, but note
that there will be no change in the preview until we add the next snippet.

Listing 12. Checking for PhoneGap

[KKK KKK KKK KKK K KKK OK K K KKK KK KKK K KKK K K KKK K K KKK K KK KK K K KK K K

* Function used to determine if we're in a PhoneGap
* environment or not. Unfortunately, there's not

* not a consensus on the best way for doing this

* (e.g., see this discussion at StackOverflow:

* http://bit.ly/Wvmmcw). And, our situation is

* is complicated by our desire to run

* in Ripple on the desktop. So, I think this code

*

is a reasonable compromise for a prototype.
*

**/
var isPhoneGap = function() {
var result =
// Check for PhoneGap/Cordova works in Ripple, but not
// reliable until deviceready
window.PhoneGap ||
window.Cordova ||
// check for browser is more reliable, but will mean if go to
// preview URL from mobile browser, this test will pass and it
// will think you want to use PhoneGap.
navigator.userAgent.match(/ (iPhone|iPod|iPad|Android|BlackBerry)/);

return result;

}

In Listing 13, we put the functions from the last couple of listings to use. First, we call
beforeDeviceReady as an initialization step. Then, if we're using PhoneGap, we register a listener for
PhoneGap's deviceready event. When that event fires, it's an indication that it's safe to start calling
PhoneGap APIs, and the onDeviceReady function will be called. If we're not in PhoneGap (for instance, if
we're in the Maqgetta previewer), the device is "ready" by default, so we can immediately call
onDeviceReady.

Listing 13. Initializing the page

[KRR KKK KK K KK KK K KK KK KKK KK KK K KK KK K KK KK K KK KK K KK KK K K KK K K X

* Bootstrapping -- call beforeDeviceReady and then

* cause onDeviceReady to be called depending on the

* environment we're in.
**/

beforeDeviceReady();

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 17/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

if (isPhoneGap()) {
// We're running on with PhoneGap, so register for deviceready.
document.addEventListener("deviceready", onDeviceReady, false);

} else {
// We're in a desktop browser, so our device is automatically "ready"
onDeviceReady () ;

}

After you update app. js with the code in Listing 13, the preview app should show your current position.
You might still be wondering how we'll test the PhoneGap branch and Update Location functionality,
however. In the next section, the Ripple Emulator will answer both of these questions.

The Ripple Emulator

The Ripple Emulator (in beta at the time of this writing) is a Google Chrome extension that provides a
browser environment where a subset of the PhoneGap APlIs is emulated. We'll use the Ripple Emulator to
test calls to the Geolocation API, as well as the app's use of the deviceready event.

Set up the Ripple Emulator as follows:

1. Using Google Chrome, go to
2. If you've never used Ripple before, you will be advised to install the Ripple Emulator (see Figure 14).
Click the Get Ripple Emulator button to get started.
Figure 15. Install Ripple Emulator

\\ EMULATION

"b. POWERED BY RIPFLE

3. Next you'll be taken to the Chrome Web Store where you should click the Add to Chrome button.
4. Reload and you'll see a form to enter a URL to be emulated, as shown in
Figure 16.

Figure 16. Ripple installed (enter a URL)

EMULATION

%, POWERED BV RPPLE

Test the GPS locator

With the Ripple Emulator launched, we're ready to test the app:

1. Enter the URL for the GPS locator and hit Return. To get the URL, copy and paste the link next to the
Previewing label in the Magetta preview. It should be something like the following but will vary
depending on your personal identifier:

http://app.maqgetta.org/maqetta/user/XYZ/ws/workspace/gpsLocator/index.html.
2. Once Ripple launches, you should see the GPS locator app running in a simulated mobile device, and

the map centered on Waterloo, Ontario, Canada (see Figure 17). Since Waterloo is the default position

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 18/31

http://emulate.phonegap.com/
http://emulate.phonegap.com/
http://app.maqetta.org/maqetta/user/XYZ/ws/workspace/gpsLocator/index.htm

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

provided by the Ripple Emulator, this indicates that deviceready was fired successfully and that our
code in updateCurrentPosition successfully invoked PhoneGap's
navigator.geolocation.getCurrentPosition function.

Figure 17. GPS locator's first run in Ripple

== ==

3. To change the device used for the preview, open the Devices section in the upper-left corner of Ripple.
The default is set to Generic — WVGA (480x800). Change the selection to iPhone 4/4S as shown in
Figure 18.

Figure 18. Change the device setting in Ripple

Devices

iPhone 4i4s

4. Now the size of the device rendering in Ripple should look exactly like it did in the Maqgetta preview (see

Figure 19).
Figure 19. GPS locator rendered for iPhone in Ripple

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 19/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

L ‘gé?-

@*“"’:isl e

Hagey Ha
University e
4 of Waterloo P
Waterloo ok
%
g,
% &
E g
e e e

= kg
K % _2"Map data $201¥ Goagle

Latitude 43.465187

Longitude -80.522372

Update Location |

5. Open the Geo Location section on the right side of Ripple. As shown in Figure 20, you can see detailed

information about the device location being provided to the PhoneGap APIs. You'll notice that the map
in the prototype is centered in the same position as the map in Ripple's Geo Location tab. The values
that the app is reporting for latitude and longitude also match.

Figure 20. Location tab in Ripple

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

20/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

Geo Location

43465187
-80.522372
100

50

80

How do | GPX file? Leam more

Choose File JuliReglvt-)

6. Experiment with the settings in the Geo Location tab. You can slide the map to a new position or enter
explicit values for latitude and longitude. After making your update, click the app's Update Location
button to see what happens. In Figure 21, the position was updated to the IBM site in Rochester, MN
(latitude = 44.058633 and longitude = -92.507393).

Figure 21. Updated location from Ripple Emulator

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 21/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

44 058633

92.507393

Export the app to PhoneGap

Now, that we've seen that the app is working (including its use of PhoneGap APIs), we can prepare to
build it with the Adobe PhoneGap Build service. We'll start by exporting the project from Maqgetta, but
before doing so, check the following (note that these steps are provided as a checklist for exporting future
Magetta projects to PhoneGap).

1. Ensure that your main HTML file is named index.html and is located in the root directory of your
project. This file name is required for any Magetta project that you want to build with PhoneGap.

2. If you are using PhoneGap APIs (as we did for the GPS locator), you'll need to load phonegap. js from
your index.html. This will pull in the JavaScript that the PhoneGap APIs require. First, view the HTML
source (recall the Source button in the Magetta toolbar), then add the line in Listing 14 just above the
line that loads app. js (which should be around line 26). Then save your HTML file.

Listing 14. Loading phonegap.js from index.html
<script stype="text/javascript" src="phonegap.js"></script>

3. Note that even though we're loading phonegap. js, the PhoneGap JavaScript resources are not in your
Magqetta project (nor do they need to be). They will, however, be included in the set of resources
packaged with your native app after building with PhoneGap.

4. Save index.html and go back to Design mode by clicking the Design button in the Maqgetta toolbar.

Export the project zip from Maqetta
Next we'll download the project from Magetta as a zip file, which we'll then provide to the PhoneGap build

service:
1. In the Magqetta Files palette, click the Download Entire Workspace icon in the toolbar, which will
invoke the Download dialog (see Figure 22). The zip file name is defaulted based on your project name.
2. Uncheck the gridx, clipart, and shapes libraries because we're not using them. Doing this will
decrease the size of the zip file.
Figure 22. Download the project from Magetta

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 22/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

Download X

File name:|gpsLocator.zip

a : Include .
Library Version Shditee Base Location
dojo 1.8 = lib/dojo
gridx 1.00 lib/dajofgridx
clipart 1.0 libdclipart
shapes 1.0 libishapes

Select: All / None

Download uncompressed source for selected libraries (if available)
Use Dojo Web Builder (experimental)

| Download | | Cancel |

3. Click the Download button, which will download the zip file containing the project's resources to your
file system.

Build the prototype with PhoneGap

We're now ready to start the process of building the prototype as a native app by using the Adobe
PhoneGap Build service. Start by going to . Assuming that you've never
signed in to PhoneGap before:

1. Click the Get started! button.

2. If you just want to try it out without paying, click Completely Free, which allows you to build/manage
one private app at a time.

3. Log in with either your Adobe ID or your GitHub credentials.

4. Once you are logged in, you will see a screen like the one in Figure 23 below. Make sure the Private
tab is selected, and click the Upload a zip file button.
Figure 23. PhoneGap build

Docs Blog

Welcome to Adobe* PhoneGap™ Build!

Let's get you started building an app.

5. Using the file chooser dialog that comes up, select the zip file that you downloaded from Magetta (e.g.,
gpsLocator.zip).

6. After the file has uploaded you'll see a page like the one in Figure 24, which invites you to enter some
information about your app and build it. Enter a name for your app like "Magetta Locator." You can also
enter a description such as "Sample GPS locator prototyped in Magetta." Given that we're clearly in
prototyping mode, it's probably a good idea to check the Enable debugging option (using the debugger
is beyond the scope of this article).

Figure 24. App panel in PhoneGap

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 23/31

https://build.phonegap.com/

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

E Magetta Locator

[& m Rrayto b

7. Click the Ready to build button, and the Adobe PhoneGap Build service will start the process of
building native apps for a variety of platforms.

8. Once the build completes, the panel for your app will have a series of buttons (one for each device) to
allow you to download the results (see Figure 25). Buttons that are colored red indicate that the build
for that particular device did not complete successfully. You can click the red buttons to get more
information. Note that both iOS (because we did not provide a developer key) and Blackberry (because
there are too many files) will fail. Updating the application for these devices is beyond the scope of this
article.

Figure 25. Build complete

9. If you ever change your app in Maqgetta, you can download a new zip file and then click the Update
code button in PhoneGap to run a new build.

The Android Emulator

One way to test the PhoneGap output without having to access a physical device is to use the Android
Emulator, which is part of the Android SDK. If you want to do this yourself, you can follow the steps below
to create an Android Virtual Device on which to install your app:

1. Follow the instructions to on your
system. It includes the Android SDK, the Android Platform-tools, and a version of the Eclipse IDE with
the ADT plugin.

After installing the ADT bundle, launch the Eclipse IDE that comes with the bundle.

From Eclipse, choose the Window > Android Virtual Device Manager menu option.

In the dialog that comes up, click the New... button to create a new device.

In the Create dialog (see Figure 26) give your device a name (such as "myVirtualDevice"), choose a
device (I chose "Nexus S"), set the target platform to Android 4.2, and click OK.

Figure 26. Creating a virtual device

o~ wDd

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 24/31

http://developer.android.com/sdk/installing/bundle.html

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap
8.0.0 Create new Android Virtual Device (AVD)

AVD Name: | myVirtuaIDevice| I
Device: | Mexus S (4.0", 480 x 800: hdpi) 3]
Target: | Android 4.2 - API Level 17 =
CPU/JABL ARM (armeabi-v7a)
Keyhoard: EI Hardware keyboard present
Skin: [Q]' Display a skin with hardware controls
Front Camera: | Mone]
Back Camera: | None 2|
Memory Options: RAM: 343 VM Heap: 32
Internal Storage: 200 | MiB)
SD Card: . -

() Size: | mig 2]

(_J File: Browse...
Emulation Options: || Snapshot || Use Host GPU

Override the existing AVD with the same name
| cancel | [oK J

6. The dialog will disappear, and the new device will appear in the table of Android virtual devices. Select it
and click the Start... button. Then click Launch in the next dialog. This will start the Android Emulator.

Deploy the app
With the Android Emulator running, we can deploy and test the app:

1. On the PhoneGap build page, click the button to download the app for Android. This will save an .apk
file to your file system with a name like Magettalocator-debug. apk.

2. Once you have the .apk file, you can intall it on your virtual device by using the Android Debug Bridge
(adb) command from the command line. Your command would look something like the following:

<sdk>/platform-tools/adb install <path_to_apk>/Maqgettalocator-debug.apk

If this command is successful, you'll get a "Success" message in the console and then be able to see
the app represented as an icon alongside all of the other apps installed on the emulator (note the
"Maqetta Locator" app icon in Figure 27).

3. To launch the app, just double-click it.
Figure 27. App displayed on PhoneGap's Android Emulator launch screen

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 25/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

AFiDemos Browser Calculator Calendar ‘n&
_

O #E

Camera Clock Dev Settings

O = 3B

DevTools Downloads Gestures
Builder

0= o @

Magetia Messaging People
Locator

fﬁ .\ = Fgl

Search Settings Speech
Recorder

Set the location in Android Emulator

As shown in Figure 28, when you launch the app in Android Emulator, you'll see the zoomed-out world
map; this is because no geo-position is initially available within the emulator.

Figure 28. GPS locator in Android Emulator before position set

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 26/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

Satellite

EUROPE

@ICA

SOUTH
AMERICA

(

OORIC

Latitude

Longitude

To change this, we need to set the geographic location known to the Android Emulator:

1. From the command line, connect to the Emulator Console with the following command:

telnet localhost 5554

If you're using Windows, note that telnet is likely not enabled by default.
2. Set the latitude and longitude using the geo command. For example, to set the location to the Brooklyn
Bridge, the command would be:

geo fix -73.99665 40.705921

After setting the latitude and longitude you should see the map get centered on the Brooklyn Bridge,
otherwise you will need to click the Update Location button. Figure 29 shows the app running in the
emulator after the location update (and after clicking the Hybrid button to change the map type).

Figure 29. Locator app after position has been set

www .ibm.com/developerworks/mobile/library/mo-magqetta-3/index.html 27/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

d Road l Satellite ! i g g !

Latitude 40.705920

Longitude -73.996650

Update Location

And, with that, you've successfully verified that the GPS locator works as a native Android app!

Revisiting the weight tracker
The steps we've taken to export the GPS locator from Magetta, build with PhoneGap, and deploy to a
mobile device/emulator would work with any Maqgetta mobile prototype. As an example, Figure 30 shows

the weight tracker prototype that we developed in Parts 1 and 2 running within the Android Emulator, after
being built with PhoneGap.

Figure 30. Weight tracker in Android Emulator

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 28/31

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

2012-10-01

2012-10-09

2012-10-15

2012-10-23

2012-11-01

Conclusion to the Magetta series

In this three-part series, we've used Magqgetta to quickly build prototypes for two different mobile apps. In
the process, we've managed to cover a lot of ground, and hopefully provided a thorough introduction to
Magetta. For both apps, we started with a reasonable prototype that didn't require writing any code, then
extended its interactive features by adding some custom JavaScript. In this last article, we combined
Magetta with PhoneGap, which we used to turn a GPS locator application prototype into a native app,
which we then tested using the Android Emulator.

If you want to learn more about Magetta, start with some of the links in the Resources section, and also
read . Also keep in mind that you can use the step-by-step instructions in this article as a
guide for developing future Magetta mobile applications and deploying them with PhoneGap.

Acknowledgments
Special thanks to the Magetta team (Jon Ferraiolo, Javier Pedemonte, Adam Peller, and Bill Reed) for
thoughtfully reviewing and providing constructive feedback on this series of articles.

Download
Description Name Size
Final source of the custom app 5KB

www .ibm.com/developerworks/mobile/library/mo-magqetta-3/index.html 29/31

https://www.ibm.com/developerworks/mydeveloperworks/blogs/MaqettaAuthoring/?lang=en
http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=932885&filename=maqetta_part3.zip&method=http&locale=

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap

Resources Dig deeper into Mobile

development on developerWorks
Learn

Read the Magetta series:

Part 1: Design an HTML5 mobile Ul (Tony Erwin, developerWorks,
January 2013): Learn about Maqgetta's major features while creating a
prototype for a rich mobile application.

Part 2: Write custom JavaScript for your Magetta mobile Ul (Tony Erwin,
developerWorks, February 2013): Take your prototype application to the
next level by writing custom JavaScript to add interactive functionality.

Mobile application development, Part 1: PhoneGap and Dojo Mobile on
Android (Bryce Curtis, Gill Woodcock, Todd Kaplinger, developerWorks,
September 2011): A hands-on introduction to integrating PhoneGap and
Dojo Mobile on Android.

Magetta documentation: Get tutorials and cheat sheets from the Magetta
development team.

MagettaYouTube Channel: Check out online video demonstrations,
including an introduction to Magetta composition types.

Tony Erwin's Magetta blog: Learn more from this author, who is part of the
Magetta development team.

@Magetia: Follow Magetta on Twitter.

Magetta on developerWorks: More resources for learning how to work with
Magqetta.

HTMLS5 fundamentals: Follow this developerWorks knowledge path to learn
the fundamentals of working with HTMLS5.

The W3C HTML5 Wiki: Learn even more about HTML5.

"Getting Started with dojox/mobile" (Dojo.org): Find out more about Dojo
Mobile, a framework for creating cross-device-compatible mobile web
applications.

"What's new in Dojo Mobile 1.8, Part 1: New widgets" (Yoshiroh Kamiyama,
developerWorks, November 2012): Discover the new widgets, widget-
related utility classes, and modules introduced in Dojo Mobile 1.8.

Google Static Maps API: Learn more about the Maps API used in this
article.

In the developerWorks Mobile development site, access and learn how to
use the latest tools and technologies for mobile application developers in the
comprehensive IBM MobileFirst product portfolio. Explore our free software
downloads and cloud trials, sample code, expert how-to advice, videos,
training, and discussion—all focused on helping you develop, test, integrate,
analyze, secure, and manage multi-platform mobile applications and
deployments in your organization.

Get products and technologies

Download Magetta: Install Magetta on your own intranet server after

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html

Overview

Products

Learn about mobile technologies
Technical library (articles and more)

Connect

developerWorks Labs

Experiment with new directions in
software development.

JazzHub

Software development in the cloud.
Register today and get free private
projects through 2014.

IBM evaluation software
Evaluate IBM software and
solutions, and transform challenges
into opportunities.

N =&

30/31

http://www.ibm.com/developerworks/web/library/mo-maqetta-1/index.html
http://www.ibm.com/developerworks/web/library/mo-maqetta-2/index.html
http://www.ibm.com/developerworks/library/wa-mobappdev1/index.html
http://app.maqetta.org/maqetta/app/docs/index.html
http://app.maqetta.org/maqetta/app/docs/index.html#tutorials/tutorials
http://app.maqetta.org/maqetta/app/docs/index.html#cheatsheets/cheatsheets
http://www.youtube.com/user/Maqetta/
http://www.youtube.com/watch?v=J24Hi3f7yQ4&feature=plcp
https://www.ibm.com/developerworks/mydeveloperworks/blogs/MaqettaAuthoring/?lang=en
https://twitter.com/Maqetta
https://www.ibm.com/search/csass/search/?sn=dw&en=utf&hpp=20&dws=dw&q=maqetta&Search=Search
http://www.ibm.com/developerworks/training/kp/wa-kp-html5/
http://www.w3.org/community/webed/wiki/HTML
http://dojotoolkit.org/documentation/tutorials/1.8/mobile/tweetview/getting_started/
http://www.ibm.com/developerworks/mobile/library/mo-dojo-mobile-new-18-1/
https://developers.google.com/maps/documentation/staticmaps/
http://www.ibm.com/developerworks/mobile/
http://maqetta.org/downloads/
http://app.maqetta.org/maqetta/app/docs/index.html#install
http://www.ibm.com/developerworks/mobile/
http://www.ibm.com/developerworks/mobile/products.html
http://www.ibm.com/developerworks/mobile/learn.html
http://www.ibm.com/developerworks/mobile/library/
http://www.ibm.com/developerworks/mobile/connect.html
http://www.ibm.com/developerworks/labs/?ca=dti-tiles-labs
https://hub.jazz.net/?utm_source=developerWorks&utm_medium=ad&utm_campaign=dW+tiny+ad
http://www.ibm.com/developerworks/downloads/?ca=dti-tiles-evaluate

10/31/13 Magetta means mockup, Part 3: Deploy your Magetta UI prototype with PhoneGap
retrieving it from the downloads page or launch Magetta in the cloud.

Download PhoneGap: A free and open source framework that makes it easy
to create mobile apps using standardized web APIs.

Get the Ripple Emulator: A Google Chrome extension that provides a
browser environment where a subset of the PhoneGap APIs are emulated.

Download the Android ADT Bundle: Combines the Android SDK, the
Android Platform-tools, and a version of the Eclipse IDE with the ADT

plugin.

Discuss

Join the Magetta user group: Interact with other designers and developers
using Magetta to create desktop and mobile Uls.

Get involved in the developer\Works community. Connect with other
developerWorks users while exploring the developer-driven blogs, forums,
groups, and wikis.

www.ibm.com/de veloperworks/mobile/library/mo-magetta-3/index.html 31/31

http://www.maqetta.org/
http://phonegap.com/download/
http://emulate.phonegap.com/
http://developer.android.com/sdk/installing/bundle.html
http://groups.google.com/group/maqetta-users
http://www.ibm.com/developerworks/mydeveloperworks/mydeveloperworks

