
© Copyright IBM Corporation 2013 Trademarks
Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 1 of 24

Maqetta means mockup, Part 2: Write custom
JavaScript for your Maqetta mobile UI
Develop an interactive UI prototype with JavaScript and the
Dojo Toolkit

Tony Erwin
Software Engineer
IBM

Skill Level: Intermediate

Date: 11 Mar 2013

As you learned in Part 1 of this series, Maqetta is a WYSIWYG application that
makes it easy to design a sophisticated desktop or mobile UI without writing
any code. But what if you need a richer UI that responds to user input in more
advanced ways? In this follow-up article, Tony Erwin walks you through the
process of enhancing your Maqetta mobile UI with custom JavaScript using Dojo
and the Dojo Mobile library.

View more content in this series

Introduction

About this series

This series shows you how to use Maqetta to prototype HTML5 user
interfaces.

• In Part 1, learn about Maqetta's major features while creating a
prototype for a rich mobile application.

• In this part, take your prototype application to the next level by
writing custom JavaScript to add interactive functionality.

• In Part 3, use PhoneGap to turn a Maqetta-generated mobile
prototype into a native app that is ready to deploy to actual devices.

Learn more about using Maqetta in Tony's blog on developerWorks.

If you read the first article in this series, then you know that Maqetta is a browser-
based application for designing and developing desktop and mobile UIs. That article
showed you how to use Maqetta's drag-and-drop interface to design a rich mobile UI

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/
http://www.ibm.com/developerworks/views/mobile/libraryview.jsp?site_id=1&contentarea_by=Mobile%20development&sort_by=Title&sort_order=1&start=1&end=3&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=Maqetta&industry_by=-1&series_title_by=
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/index.html
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-3/index.html
https://www.ibm.com/developerworks/mydeveloperworks/blogs/MaqettaAuthoring/?lang=en
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 2 of 24

prototype without writing any code. Though the prototype was live — meaning that a
user could interact with its features — the data on the views was mostly static. While
a prototype like this is often sufficient for proof-of-concept, some situations (such as
trying to sell your concept to a client or potential investor) require a higher fidelity
prototype that better demonstrates the application's behavior in practice.

In this article, we'll take our weight tracker application prototype to the next level with
custom JavaScript. The updated application will leverage interactive features from
Dojo and the Dojo Mobile library to respond to user events and dynamically change
the data shown by widgets in each view.

If you haven't read Part 1 or previously developed a Maqetta UI prototype on your
own, the examples could be difficult to follow. I recommend that you familiarize
yourself with the fundamentals of Maqetta UI development before continuing.

A richer prototype

From Part 1, you may recall the weight tracker app flow (see Figure 1). When a user
clicks a row in the weight list in mainView, he or she is taken to detailsView to see
and edit more detailed information about that weight entry. While the prototype is
visually rich and interactive, it is lacking in key areas:

• The data shown on detailsView, detailsView_Date, and detailsView_Notes is
not based on the selected item in the weight list.

• Changes made to the data on those views are not reflected in the main weight
list when a user navigates back to mainView.

• The plus (+) button on mainView does not actually add a new item to the weight
list.

In this article, we'll address these shortcomings by adding custom JavaScript to the
weight tracker application prototype. As a result, users of the prototype will have a
richer, more realistic experience of the desired functionality.

Figure 1. A flowchart for the weight tracker application

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 3 of 24

Enlarge the figure

Set up your workspace

Examples in this article are based on the index.html and weights.json files we
created for the weight tracker UI prototype in Part 1. Ideally, you're familiar with
both of these files. If you've previously used Maqetta to design a mobile UI, and you
want to focus on writing custom JavaScript for more dynamic UI features, then you
can download the files from Part 1, unzip them, and upload them into your Maqetta
workspace as follows:

1. In Maqetta's Files palette (on the lower left of the display), right-click one of the
root-level files (such as app.js) and choose the Upload files... option.

2. In the Upload Files dialog, click Select Files.... An OS-specific dialog then
invites you to choose files from your file system. Choose the files you want to
upload (index.html and weights.json), and they will be added to the list in the
Upload Files dialog, as shown in Figure 2.

sidefile-fig1.html
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/index.html#download

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 4 of 24

Figure 2. Uploading files

3. Click the Upload button, and the files will be uploaded and will appear in your
Files palette. You can use these files just like any that you had created yourself,
directly in Maqetta.

Maqetta's HTML source

Before writing JavaScript for a Maqetta prototype, you should be familiar with the
prototype's generated HTML source. Let's view the source for index.html:

1. Open index.html in the Maqetta page editor.
2. If you want to see just the source (and not your design canvas), click the

Source button in the Maqetta toolbar. Click Design to get your design canvas
back.

3. If you want to see the source for the file alongside your design canvas, open the
pull-down menu next to the Source button (as shown in Figure 3) and choose
Split Vertically or Split Horizontally. The option you choose will become the
default view the next time you click the Source button.

Figure 3. View options in the Source menu

Note that when you're working in a split screen, you can select a widget in the design
pane to see its source highlighted in the source pane. In Figure 4, I've selected the
EdgeToEdgeDataList from the mainView, and its HTML is highlighted in the source
pane:

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 5 of 24

Figure 4. The horizontal source pane

Explore the HTML source
One of the first things that the Maqetta-generated HTML source does is to set
up Dojo. When the HTML is loaded, the dojo/parser (see Resources for more
information) parses the HTML tags in the body of the document and creates Dojo
widgets as indicated. These Dojo widgets are JavaScript objects, which we can
reference and manipulate with custom JavaScript.

The Dojo Reference Guide
The rich mobile application UI developed in this article uses functionality
and widgets found in the Dojo, Dijit, and Dojo Mobile (dojox/mobile)
packages of the Dojo Toolkit. Please refer to the Dojo Reference Guide (1.8
as of this writing) to learn more about these components.

Listing 1 shows the HTML snippet from index.html that makes up the mainView.
The very first line defines an HTML <div> element. Note that the value for the data-
dojo-type attribute tells the Dojo parser to create an instance of dojox/mobile/
ScrollableView, which is a JavaScript class from the Dojo Mobile library (see
Resources). It represents the ScrollableView widget in our mainView.

Also note that the ID is set to mainView (you might recall setting this ID in Part 1,
using the Properties palette). Knowing a Dojo widget's type and ID makes it relatively
straightforward to write JavaScript to change the widget's runtime behavior, as you'll
see shortly.

http://dojotoolkit.org/reference-guide/1.8/dojo/index.html
http://dojotoolkit.org/reference-guide/1.8/dijit/index.html
http://dojotoolkit.org/reference-guide/1.8/dojox/mobile.html#dojox-mobile
http://dojotoolkit.org/
http://dojotoolkit.org/reference-guide/1.8/

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 6 of 24

Listing 1. Snippet for mainView from index.html
<div data-dojo-type="dojox.mobile.ScrollableView" id="mainView"
 keepScrollPos="false" scrollBar="true" selected="selected">
 <h1 label="Weight Tracker" data-dojo-type="dojox.mobile.Heading" fixed="top">
 <div label="+" data-dojo-type="dojox.mobile.ToolBarButton"
 moveTo="detailsView" style="float: right;"></div>
 </h1>
 <span data-dojo-type="dojo.data.ItemFileReadStore" id="ItemFileReadStore_1"
 jsId="ItemFileReadStore_1" url="weights.json">
 <ul data-dojo-type="dojox.mobile.EdgeToEdgeDataList" store="ItemFileReadStore_1"
 query="{"label":"*"}">
</div>

Other elements in Listing 1 should have familiar attributes. Inside the <div> element
for mainView, for instance, we see the following:

• An <h1> element of Dojo type dojox/mobile/Heading with a label of "Weight
Tracker." Inside this element is a <div> element of Dojo type dojox/mobile/
ToolBarButton with a label of "+" and an ID of addWeightButton. We'll write
some JavaScript that responds to a click event on this button by adding a new
entry to the weight list.

• A element of Dojo type dojo/data/ItemFileReadStore that specifies a
URL of weights.json.

• A element of Dojo type dojox/mobile/EdgeToEdgeDataList with an ID of
weightList and a store attribute. Note that the store attribute points to the
ItemFileReadStore that was created on the previous line. We'll write JavaScript
that gets a reference to this list and modifies its data store.

Update weights.json
Before we start writing custom JavaScript, we need to add some new and updated
fields to weights.json. Open weights.json by double-clicking it in the Files palette,
which sits on the lower left of the Maqetta workbench. Then replace the contents with
what you see in Listing 2 and save the file.

Listing 2. Update to weights.json
{
 "identifier": "id",
 "items": [
 {id: "weight_0", label: "149", moveTo: "#", rightText: "2012-10-01",
 notes: "Starting to track my weight."},

 {id: "weight_1", label: "150", moveTo: "#", rightText: "2012-10-09",
 notes: "Ran 5 miles and ate lots of broccoli!"},

 {id: "weight_2", label: "151", moveTo: "#", rightText: "2012-10-15",
 notes: "Oops, going in wrong direction."},

 {id: "weight_3", label: "148", moveTo: "#", rightText: "2012-10-23",
 notes: "Wow, lost 3 pounds!"},

 {id: "weight_4", label: "146", moveTo: "#", rightText: "2012-11-01",
 notes: "Feeling good!"}
]
}

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 7 of 24

Each line in Listing 2 contains an item meant to represent a weight entry. Each item
now contains some new and changed attributes:

• ID is a new field that acts as the unique identifier for a given weight (note the
newly added line "identifier": "ID"). This field will make it easier for us to
look up and modify individual items in JavaScript.

• label is an existing field that holds the weight of a given item.
• moveTo is an existing field that I've changed to "#", which will enable us to

handle the transition to detailsView in JavaScript.
• rightText is an existing field that holds the date of an item.
• notes is a new field that holds a text note for any given item.

Because this article is about JavaScript, I should point out that weights.json
conforms to the item structure (see Resources) of ItemFileReadStore. Recall
from looking at the HTML source that this is the kind of data store used by the
EdgeToEdgeDataList.

JavaScript in Maqetta
For the remainder of this article, we'll be adding custom JavaScript to the app.js file
for our weight tracker application. Note that an app.js is provided by default for all
Maqetta projects. If you look at the source for index.html (or any Maqetta-generated
HTML file), you will see that it loads app.js via the line below:

<script type="text/javascript" src="app.js"></script>

Start by opening the app.js file in your project, which you can do by double-clicking it
in the Files palette. The file should look something like what you see in Listing 3.

Listing 3. Default app.js file
/*
 * This file is provided for custom JavaScript logic that your HTML files might need.
 * Maqetta includes this JavaScript file by default within HTML pages authored in
 * Maqetta.
 */
require(["dojo/ready"], function(ready){
 ready(function(){
 // logic that requires that Dojo is fully initialized should go here

 });
});

Note that the app.js file uses dojo/ready. Any code placed within the ready function
is guaranteed to run only after the necessary Dojo resources have been fully loaded,
the page has been parsed, and the specified Dojo widgets have been created. (See
Resources to learn more about dojo/ready.)

Simple app.js demo
To get your feet wet with app.js, let's add an alert message to the file that will display
when the application loads in a browser:

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 8 of 24

1. Add a simple alert statement to app.js like the one shown in Listing 4:
Listing 4. An alert added to app.js
/*
 * This file is provided for custom JavaScript logic that your HTML files might need.
 * Maqetta includes this JavaScript file by default within HTML pages authored in
 * Maqetta.
 */
require(["dojo/ready"], function(ready){
 ready(function(){
 // logic that requires that Dojo is fully initialized should go here

 //Add a temporary alert just to make sure we're working
 alert("Code from app.js is running!");
 });
});

2. Save app.js.
3. Preview the index.html file with the Preview in Browser button, and note that

the browser shows an alert dialog after the weight tracker app has loaded.

Add custom JavaScript
Most of our work to enhance the weight tracker application will happen in app.js.
We'll add custom JavaScript to this file to call and manipulate various Dojo widgets.
You can follow along by copying and pasting JavaScript code snippets into your
app.js file as they are presented.

Many of the JavaScript snippets represent testable enhancements to the app. As you
add code, you can use Maqetta's Preview function to test the new features. Or, if you
prefer to skip ahead, simply download the final version of app.js and replace your
current version with that one.

Required modules
The default app.js file uses the require function defined by the Dojo loader to load
a single Dojo module (the previously mentioned dojo/ready). For our purposes,
we're going to need a few more modules, including the following (see the Dojo Toolkit
Reference Guide in Resources):

• dojo/dom

• dojo/dom-style

• dijit/registry

• dojo/on

• dojo/date/stamp

• dojo/data/ItemFileWriteStore

To add these modules to your app.js, simply replace it with the code in Listing 5,
which includes the additional modules.

Listing 5. Additional Dojo modules for app.js
/*
 * This file is provided for custom JavaScript logic that your HTML files might need.
 * Maqetta includes this JavaScript file by default within HTML pages authored in

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 9 of 24

 * Maqetta.
 */
require(["dojo/ready",
 "dojo/dom",
 "dojo/dom-style",
 "dijit/registry",
 "dojo/on",
 "dojo/date/stamp",
 "dojo/data/ItemFileWriteStore"],
function(ready,
 dom,
 domStyle,
 registry,
 on,
 stamp,
 ItemFileWriteStore){

 ready(function(){
 // logic that requires that Dojo is fully initialized should go here

 });
});

Referencing widgets

Our next task is to use JavaScript to get a reference to every Dojo widget that we
want to interact with. Recall from looking at the generated HTML that we can get a
reference to any Dojo widget whose ID we know. This is especially easy with the help
of the byId function, which is found in the dijit/registry module. For instance, we
would access the weight-list widget like so: registry.byId("weightList").

Listing 6 calls registry.byId a number of times, each time looking up an individual
widget and storing its reference in a variable that we'll use later. As a safeguard, I've
added an if statement to ensure that all of the variables have been defined (note
that it's easy to mistype or forget to enter an ID). In the case of a missing variable, an
error message will appear to help us track down the problem.

Listing 6. Getting a reference to widgets
 /* ***
 * Get a reference to all the widgets we need
 ***/
 var weightList = registry.byId("weightList");
 var mainView = registry.byId("mainView");
 var detailsView = registry.byId("detailsView");
 var detailsView_Date = registry.byId("detailsView_Date");
 var detailsView_Notes = registry.byId("detailsView_Notes");
 var weightSpinWheel = registry.byId("weightSpinWheel");
 var dateListItem = registry.byId("dateListItem");
 var notesListItem = registry.byId("notesListItem");
 var dateSpinWheel = registry.byId("dateSpinWheel");
 var notesTextArea = registry.byId("notesTextArea");
 var addWeightButton = registry.byId("addWeightButton");

 // Make sure we found all of the widgets
 if (!weightList ||
 !mainView ||
 !detailsView ||
 !detailsView_Date ||
 !detailsView_Notes ||
 !weightSpinWheel ||

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 10 of 24

 !dateListItem ||
 !notesListItem ||
 !dateSpinWheel ||
 !notesTextArea ||
 !addWeightButton) {

 // show an error to make it easier to figure out
 // which widget(s) could not be found
 alert("could not find at least one of the widgets:\n" +
 "\t weightList = " + weightList + ",\n" +
 "\t mainView = " + mainView + ",\n" +
 "\t detailsView = " + detailsView + ",\n" +
 "\t detailsView_Date = " + detailsView_Date + ",\n" +
 "\t detailsView_Notes = " + detailsView_Notes + ",\n" +
 "\t weightSpinWheel = " + weightSpinWheel + ",\n" +
 "\t dateListItem = " + dateListItem + ",\n" +
 "\t notesListItem = " + notesListItem + ",\n" +
 "\t dateSpinWheel = " + dateSpinWheel + ",\n" +
 "\t notesTextArea = " + notesTextArea + ",\n" +
 "\t addWeightButton = " + addWeightButton);

 // return, so don't run any other JavaScript
 return;
 }

Go ahead and copy and paste this code immediately inside the ready function in your
app.js file. Then save the file and preview the app to ensure that all of the widgets
are there.

Change the data store
You saw earlier in the HTML source that Maqetta generated an ItemFileReadStore
to be used by our EdgeToEdgeDataList in the mainView. While the ItemFileReadStore
is good for static data, we now want to modify the weight tracker application's data at
runtime, so we need our EdgeToEdgeDataList to use an ItemFileWriteStore.

ItemFileWriteStore has all the functionality of an ItemFileReadStore, but it adds
implemented functions required by the dojo/data/api/Write and dojo/data/api/
Notification APIs. Because of these additions, we'll be able to modify data in this
datastore with some specific function calls. Listing 7 shows the code to update the
data store used by the weight list.

Listing 7. Set a different data store
 /* ***
 * Replace ItemFileReadStore generated by
 * Maqetta with ItemFileWriteStore
 ***/
 var weightWriteStore = new ItemFileWriteStore ({
 url:"weights.json"
 });
 weightList.setStore (weightWriteStore);

Copy the code from Listing 7 and paste it in to your app.js file after the if statement
that we added in Listing 6. After saving the app.js file, try previewing the weight
tracker app. You should see that the weight list from your weights.json file is still
displayed in the EdgeToEdgeDataList.

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 11 of 24

Add a placeholder for selected data
Our general strategy is to store the data for a currently selected weight entry in the
selectedWeightData variable. The code in Listing 8 defines that variable. Add the
code below to your app.js file. Note that you won't see any difference in functionality
if you preview the weight tracker app after making the change.

Listing 8. Placeholder for selected data
 /* ***
 * Provide placeholder for the weight data
 * currently being edited.
 **/
 var selectedWeightData = null;

Add a click handler
Next we'll define a function called listItemClick, which will eventually be invoked
every time an item in mainView's EdgeToEdgeDataList is clicked. The listItemClick
function expects a dojoListItem parameter of type dojox/mobile/ListItem. We'll
use the reference to the ListItem to populate the selectedWeightData variable from
Listing 8.

After we've populated selectedWeightData, we'll initiate the transition to detailsView.
(Recall that in Listing 2 we changed moveTo to "#" so that we could manually handle
this transition.)

Listing 9 shows the JavaScript to define listItemClick.

Listing 9. Click handler
 /* ***
 * Function to be called when item in the
 * EdgeToEdgeDataList is clicked.
 **/
 var listItemClick = function(dojoListItem) {
 // Fill in selected weight data based on selected item
 selectedWeightData = {
 id: dojoListItem.params.id,
 label: dojoListItem.params.label,
 rightText: dojoListItem.params.rightText,
 notes: dojoListItem.params.notes,
 };

 //Perform the transition
 dojoListItem.transitionTo("detailsView");
 };

Go ahead and add the new click handler to your app.js now. You won't see any
changes in the application preview until we attach it in the next section.

Listen for the click
Next we want the listItemClick function to be called whenever a weight-list item
is selected, but there's no direct way to add a click handler to individual list items.
You might recall, though, that the EdgeToEdgeDataList was represented in the HTML
source by a element. At runtime, the EdgeToEdgeDataList will create individual

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 12 of 24

 elements for each item displayed in the list. We'll use that knowledge to create
the weight-list functionality that we want.

In Listing 10, we use dojo/on to register a function that will be called anytime the
EdgeToEdgeDataList is clicked. We then examine the target of the event to determine
what sub-element of the list was underneath the mouse when a click happened.
That sub-element will be a descendant of the element that we're interested
in. We search the sub-element's ancestry to find the . Once we've found the
, we can use registry.byId to get a reference to the Dojo ListItem and call
listItemClick.

Listing 10. Click handler for EdgeToEdgeDataList
 /* ***
 * When weight list is clicked, we want to
 * find the Dojo ListItem that was actually
 * targeted by the user and handle the click.
 **/
 on(weightList, "click",
 function(event) {
 // The event's "target" will be the list's
 // sub-element what was clicked. (The
 // event's "currentTarget" should be the list
 // itself.
 var subElement = event.target;

 // The subElement of the list may be an LI or
 // a child of an LI element. If not an LI,
 // we want to search the ancestry of the
 // subElement to find the LI.
 var parent = subElement.parentNode;
 while (parent != null && parent.nodeName != "LI") {
 parent = parent.parentNode;
 }

 if (parent) {
 // If parent is set, then we've found the LI. From
 // there we can use the id to get the Dojo ListItem.
 var dojoListItem = registry.byId(parent.id);

 // Handle the click
 listItemClick(dojoListItem);
 }
 });

After updating app.js with this code and saving it, preview the weight tracker
application. Does clicking an item in the EdgeToEdgeDataList cause a transition to
detailsView? Recall that the transition is now initiated by the listItemClick function.
So, if the listItemClick function is executed, the transition should occur. And, if
the transition occurs, we can also be reasonably certain that selectedWeightData is
being populated with the data from the selected list item.

Monitor transition events
At this point we've set up a good base in app.js to implement the functionality
we care about, and we're done with the hardest part of adding more dynamic
functionality to our UI prototype. For the next several sections, we'll repeat the

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 13 of 24

same general strategy to monitor the transition events that occur as various views
are shown and hidden. In the process, you'll get more familiar with adding custom
JavaScript to a Maqetta UI prototype.

Details view transitions
Just before a view becomes visible (as indicated by an onBeforeTransitionIn
event), we want to set the values on the widgets in that view based on the data
in selectedWeightData. Likewise, just before a view is hidden (as indicated by an
onBeforeTransitionOut event), we will update the data in the selectedWeightData
variable. The update will reflect any changes that the user has made while interacting
with the UI widgets in the view. After we update the selectedWeightData, any
changes will be available to the transition handler for the next view to be shown.

In Listing 11 below, we start by exploring the transition into detailsView.
Using the dojo/on module, we specify a function to be called when the
beforeTransitionIn event is fired for detailsView. In that function, we update
weightSpinWheel, dateListItem, and notesListItem based on the values we find in
selectedWeightData. Note the following about the code in Listing 11:

• Updating weightSpinWheel requires some maneuvering because we need to set
the value for each each spin-wheel slot based on the digits in the weight (which
is located in selectedWeightData.label). It happens that weightSpinWheel is
an instance of dojox/mobile/SpinWheel, so we can get the slots by calling the
getSlots function. Each slot is an instance of dojox/mobile/SpinWheelSlot.
Like most Dojo Mobile widgets, we can set its value attribute via the set
function.

• We update the rightText attribute for dateListItem by issuing a call to its set
function. We also use set to update the rightText attribute for notesListItem.

• After doing the update, we'll use domStyle.get to get the width of the DOM
node holding the right-text for the dateListItem. Then we'll use that value with
domStyle.set to change the width of the DOM node holding the right-text for the
notesListItem. With the width set properly, we can use other CSS attributes
(namely white-space, overflow, and text-overflow) to cause the rightText to
be truncated (with an ellipsis) if necessary.

Listing 11. Before transitioning into the Details view
 /* ***
 * detailsView Transitions
 ***/
 on(detailsView, "beforeTransitionIn",
 function(){
 if (selectedWeightData) {
 // Get the slots from the spin wheel
 var weightSpinWheelSlots = weightSpinWheel.getSlots();

 // Loop over digits in weight to set value for each slot in the
 // spin wheel. For simplicity (and this is a prototype
 // after all) assuming all weight labels have a string length
 // of 3 (e.g., weight > 100)
 for (var i = 0; i < 3; i++) {
 var char = selectedWeightData.label.charAt(i);

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 14 of 24

 weightSpinWheelSlots[i].set("value", char);
 }

 // Update the date list item
 dateListItem.set("rightText", selectedWeightData.rightText);

 // Update the notes list item
 notesListItem.set("rightText", selectedWeightData.notes);

 // Update styling of notesListItem's rightTextNode so that
 // it's the same width as the date label and will automatically
 // add an ellipsis for us. The settings for whiteSpace,
 // overflow, and textOverflow are static, so they technically
 // should go in app.css and override the "mblListItemRightText"
 // style class.
 var width = Math.round(domStyle.get(dateListItem.rightTextNode, "width"));
 domStyle.set(notesListItem.rightTextNode, "width", width + "px");
 domStyle.set(notesListItem.rightTextNode, "whiteSpace", "nowrap");
 domStyle.set(notesListItem.rightTextNode, "overflow", "hidden");
 domStyle.set(notesListItem.rightTextNode, "textOverflow", "ellipsis");
 }
 });

After updating app.js with the code snippet above, our application preview should
start behaving a lot more like we want it to. If you click an item in mainView, the
widgets in detailsView should actually reflect the item clicked. For example,
Figure 5 shows the result of clicking on the first item in the EdgeToEdgeDataList in
detailsView. Note how the values are different from the default values you see in
the Maqetta page editor. Also note that if you go back to the mainView (by clicking the
Home button in the heading), and select a different item in the weight list, that the
detailsView again has different values!

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 15 of 24

Figure 5. Details view with non-default values

Transition out of detailsView

Now we'll deal with what happens when the user leaves the detailsView. Recall that
when we leave a view, we want to update selectedWeightData to reflect any changes
that the user made while in that view. In Listing 12 we use dojo/on to register a
function to be called when a beforeTransitionOut event is fired for detailsView.

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 16 of 24

The only widget that the user can edit in this view is the weightSpinWheel, so weight
(stored in selectedWeightData.label) is the only thing we modify when leaving the
view. We again use the getSlots function to get the individual slots, but this time we
loop over the slots, pulling the value attribute from each one and concatenating the
results to form a string that represents the weight. We then put this value back in
selectedWeightData.

Listing 12. Before transitioning out of the Details view

 on(detailsView, "beforeTransitionOut",
 function(){
 if (selectedWeightData) {
 // Get the slots from the spin wheel
 var weightSpinWheelSlots = weightSpinWheel.getSlots();

 // Build up the new label for weight from the weight spin wheel slots
 var newLabel = "";
 for (var i = 0; i < weightSpinWheelSlots.length; i++) {
 newLabel += weightSpinWheelSlots[i].get("value");
 }

 // Update selected weight data
 selectedWeightData.label = newLabel;
 }
 });

When you update app.js with the snippet above, you won't notice any difference in
the behavior of the preview. Soon, however, we'll implement a beforeTransitionIn
event handler for mainView that will take advantage of the updated value in
selectedWeightData.label to update the list item. Then you'll start to see some
changes!

Transitions for detailsView_Date

With app.js in its current state, the widgets in detailsView reflect the values in the
weight item that was clicked in the mainView. But, if you clicked the dateListItem in
detailsView, to get to detailsView_Date, you would see that the date spin-wheel is
still populated with the static value set in the Maqetta page editor, and not the runtime
selection. So we need to implement some more transition handlers.

In the Listing 13, we register a function to run every time the beforeTransitionIn
event is fired for detailsView_Date. In this case, the implementation is very simple.
We just set the value attribute on the dateSpinWheel (an instance of dojox/mobile/
SpinWheelDatePicker) to selectedWeightData.rightText. Note that this works
because we've been representing our dates using the ISO-8601 format that
SpinWheelDatePicker works with.

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 17 of 24

Listing 13. Before transition in for detailsView_Date
 /* ***
 * detailsView_Date Transitions
 ***/
 on(detailsView_Date, "beforeTransitionIn",
 function(){
 if (selectedWeightData) {
 // NOTE: Date spin wheel expects an ISO date (which is
 // what we've been putting in rightText)
 dateSpinWheel.set("value", selectedWeightData.rightText);
 }
 });

If you run the Preview function again after updating the app.js file with the code
above, you should find detailsView_Date working how we want it to. After picking a
weight item on mainView, the value in the date spin-wheel will match the rightText of
both the item in the EdgeToEdgeDataList and the date-list item in detailsView.

The only thing left to do with detailsView_Date is to update selectedWeightData
with the value of the date spin-wheel, in case the user has changed it.
As Listing 14 shows, when the beforeTransitionOut event is fired for
detailsView_Date, we simply get the value from dateSpinWheel and then set
selectedWeightData.rightText.

Listing 14. Before transition out for detailsView_Date
 on(detailsView_Date, "beforeTransitionOut",
 function(){
 if (selectedWeightData) {
 // Get value from the spint wheel
 var value = dateSpinWheel.get("value");

 // Update selected weight data
 selectedWeightData.rightText = value;
 }
 });

Update app.js and run Preview. If you change the value in the date spin-wheel on
detailsView_Date, then when you go back to detailsView, the rightText of the
dateListItem will be updated with the new value.

Transitions for detailsView_Notes
We'll follow the same basic process from detailsView_Date to update the code
for detailsView_Notes. As Listing 15 shows, the handlers for beforeTransitionIn
and beforeTransitionOut for detailsView_Notes are very similar to the
respective detailsView_Date handlers. The difference is that notesTextArea
and selectedWeightData.notes are used instead of dateSpinWheel and
selectedWeightData.rightText.

Listing 15. Transitions for detailsView_Notes
 /* ***
 * detailsView_Notes Transitions
 ***/

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 18 of 24

 on(detailsView_Notes, "beforeTransitionIn",
 function(){
 if (selectedWeightData) {
 notesTextArea.set("value", selectedWeightData.notes);
 }
 });

 on(detailsView_Notes, "beforeTransitionOut",
 function(){
 if (selectedWeightData) {
 // Get value from the text area
 var value = notesTextArea.get("value");

 // Update selected weight data
 selectedWeightData.notes = value;
 }
 });

After updating app.js with the code above, re-run Preview. You should find that
the notesTextArea in detailsView_Notes reflects the value of the notes attribute
in the item that was selected in mainView. And, if you make changes at the start of
the string in notesTextArea and go back to detailsView, then the rightText for the
notesListItem should also be updated.

Main view transitions

All of the transition code is in place for detailsView, detailsView_Date, and
detailsView_Notes. Next we want to ensure that our EdgeToEdgeDataList shows
the most current data when a user transitions into mainView from detailsView. For
this, we will mostly be interacting with the weightWriteStore. Recall that we created
weightWriteStore early in our updates of app.js (see Listing 7). It is an instance of
ItemFileWriteStore, whose task is to provide data to weightList.

Now we want to change values on the data item backing the list item that was
originally clicked. So, in Listing 16, we start by invoking fetchItemByIdentity
on the weightWriteStore with the ID of the item we're interested in. The
fetchItemByIdentity function works asynchronously, so we need to pass it a
function to invoke when the item has been fetched (via the onItem argument).

Once our onItem function is called, the process becomes more straightforward. We
"commit" data changes by calling setValue on weightWriteStore three times to
update label, rightText, and notes on the fetched item using the values stored in
selectedWeightData. We then call setStore on weightList using weightWriteStore
to cause the EdgeToEdgeDataList to refresh itself from the store. Finally, we null-out
selectedWeightData because we no longer have an active selection.

Listing 16. Before transition in for mainView

 /* ***
 * mainView transition
 ***/
 on(mainView, "beforeTransitionIn",
 function(){
 if (selectedWeightData) {

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 19 of 24

 weightWriteStore.fetchItemByIdentity({
 identity: selectedWeightData.id,
 onItem: function(item) {
 // We've retrieved the item we want to edit, so
 // update it in the weight list data store
 weightWriteStore.setValue(item, "label",
 selectedWeightData.label);
 weightWriteStore.setValue(item, "rightText",
 selectedWeightData.rightText);
 weightWriteStore.setValue(item, "notes",
 selectedWeightData.notes);

 // Force weight list to reload the data store
 weightList.setStore(null);
 weightList.setStore(weightWriteStore);

 //Clear out the selected weight data
 selectedWeightData = null;
 },
 onError: function(error) {
 // TODO: in production environment, would want to do
 // something with error
 console.error("fetchItemByIdentity failed!");
 }
 });
 }
 });

After updating app.js and previewing the app, you should see that we have
accomplished most of our goals. In particular, changes made in detailsView and
detailsView_Date are reflected in the EdgeToEdgeDataList after navigating back to
mainView. Changes made in detailsView_Notes are less readily apparent, but we
saw in the code above that we're committing the changes made to notes back to
the weightWriteStore. To test this, re-select the same weight entry in weightList
and navigate to detailsView_Notes. If you modified notesTextArea before, then you
should now see your updated value.

Add weight entries
We have one last piece of JavaScript to write for our dynamic UI prototype. Recall
that we wanted the plus (+) button in the mainView heading to add a new item to the
list of weights, then transition to detailsView to allow the user to edit the new entry.

To do this, as shown in Listing 17, we first use dojo/on to register a function to be
called when the addWeightButton is clicked. Within that function, we do the following:

1. Generate a unique ID for the new item using our addWeightCounter counter.
2. Use the unique ID to create default data for the new item.
3. Act like the new item was clicked and place its data in selectedWeightData.

When the transition to detailsView occurs, its beforeTransitionIn handler will
be able to use the data.

4. Call newItem on weightWriteStore with the data for the new item. Aside
from adding to the data store, this fires appropriate events so that the
EdgeToEdgeDataList will automatically create a new list-item widget
representing the new weight.

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 20 of 24

Listing 17 shows the JavaScript for the plus button.

Listing 17. Handle click on addWeightButton
 /* ***
 * Handle addWeightButton
 **/
 var addWeightCounter = 0;
 on(addWeightButton, "click", function() {
 // Generate a unique id for the new item
 var newWeightId = "newWeight_" + addWeightCounter++;

 // Fill in some default data for the new item
 var newWeightData = {
 id: newWeightId,
 moveTo: "detailsView",
 //Default to 150, but production code would use most recent weight
 label: "150",
 //Default rightText to today's date
 rightText: stamp.toISOString(new Date(), {selector: 'date'}),
 //Default notes to empty string
 notes: ""
 };

 // Set the selected weight data to data for new item
 selectedWeightData = newWeightData;

 // Add new item to the data store. NOTE: We're keeping this simple for
 // the prototype and just always adding the new item to the data store.
 // That is, we're not considering possibility of user canceling the
 // operation.
 weightWriteStore.newItem(newWeightData);
 });

When you update app.js and preview the application, the plus button should
transition to detailsView and show data for the new item. If you go immediately back
to mainView, you will see a new entry with a label of 150 and right-text with today's
date. As one last test, try going back to mainView and changing the weight and/or
date. When you go back to mainView, thanks to all of our transition handlers, the new
entry should have those updated values.

Conclusion to Part 2
The Maqetta UI prototype that we developed in Part 1 was easy to build without
writing any code and already pretty rich, but in this article, we've polished it up
considerably. Adding custom JavaScript and using interactive features from Dojo and
Dojo Mobile have improved the realism of the weight tracker's flow. The app is still far
from complete (for instance, added or edited weights don't persist across sessions,
and there's no way for a user to delete a weight entry), but that's fine for a prototype.
The added features would amply demonstrate to an executive or potential investor
how we intended for our UI to behave in practice.

Your experience with Maqetta after completing the exercises in Part 1 and Part 2
has prepared you to start building your own Maqetta prototypes, and even writing
some custom JavaScript should you need to. In Part 3, the final article in this series,
we'll continue to build on the concepts we've explored so far. First we'll build a quick

http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/index.html

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 21 of 24

prototype for a GPS locator app, and then we'll use PhoneGap to turn that prototype
into a native application to be deployed on actual mobile devices. In the meantime,
see the Resources section to learn more about Maqetta.

Acknowledgments

Special thanks to the Maqetta team (Jon Ferraiolo, Javier Pedemonte, Adam Peller,
and Bill Reed) for thoughtfully reviewing and providing constructive feedback on this
series of articles.

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 22 of 24

Downloads

Description Name Size Download
method

Final source of the custom app maqetta_part2.zip 5KB HTTP

Information about download methods

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=860909&filename=maqetta_part2.zip&method=http&locale=
http://www.ibm.com/developerworks/library/whichmethod.html

ibm.com/developerWorks/ developerWorks®

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 23 of 24

Resources
Learn

• "Maqetta means mockup, Part 1: Design an HTML5 mobile
UI" (developerWorks, January 2013): Learn about Maqetta's major features
while creating a prototype for a rich mobile application.

• Dojo Reference Guide (1.8 as of this writing): Learn more about the Dojo
components and features used to develop a more interactive weight tracker
application.

• Maqetta documentation: Get tutorials and cheat sheets from the Maqetta
development team.

• Maqetta YouTube Channel: Check out online video demonstrations, including
an introduction to Maqetta composition types.

• Tony Erwin's Maqetta blog: Learn more from this author, who is part of the
Maqetta development team.

• @Maqetta: Follow Maqetta on Twitter.
• Maqetta on developerWorks: More resources for learning how to work with

Maqetta.
• HTML5 fundamentals: Follow this developerWorks knowledge path to learn the

fundamentals of working with HTML5.
• The W3C HTML5 Wiki: Learn even more about HTML5.
• "Getting Started with dojox/mobile" (Dojo.org): Find out more about Dojo Mobile,

a framework for creating cross-device-compatible mobile web applications.
• "What's new in Dojo Mobile 1.8, Part 1: New widgets" (developerWorks,

November 2012): Discover the new widgets, widget-related utility classes, and
modules introduced in Dojo Mobile 1.8.

Get products and technologies

• The rich Maqetta mobile application UI developed in Part 2 uses functionality
and widgets found in the Dojo, Dijit, and Dojo Mobile packages of the Dojo
Toolkit.

• Maqetta.org: Launch Maqetta in the cloud.
• Download Maqetta: Install Maqetta on your own intranet server after retrieving it

from the downloads page.

Discuss

• Join the Maqetta user group: Interact with other designers and developers using
Maqetta to create desktop and mobile UIs.

• Get involved in the developerWorks community. Connect with other
developerWorks users while exploring the developer-driven blogs, forums,
groups, and wikis.

http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/index.html
http://www.ibm.com/developerworks/mobile/library/mo-maqetta-1/index.html
http://dojotoolkit.org/reference-guide/1.8/
http://app.maqetta.org/maqetta/app/docs/index.html
http://app.maqetta.org/maqetta/app/docs/index.html#tutorials/tutorials
http://app.maqetta.org/maqetta/app/docs/index.html#cheatsheets/cheatsheets
http://www.youtube.com/user/Maqetta/
http://www.youtube.com/watch?v=J24Hi3f7yQ4&feature=plcp
https://www.ibm.com/developerworks/mydeveloperworks/blogs/MaqettaAuthoring/?lang=en
https://twitter.com/Maqetta
http://www.ibm.com/developerworks/topics/maqetta
http://www.ibm.com/developerworks/training/kp/wa-kp-html5/
http://www.w3.org/community/webed/wiki/HTML
http://dojotoolkit.org/documentation/tutorials/1.8/mobile/tweetview/getting_started/
http://www.ibm.com/developerworks/mobile/library/mo-dojo-mobile-new-18-1/
http://dojotoolkit.org/reference-guide/1.8/dojo/index.html
http://dojotoolkit.org/reference-guide/1.8/dijit/index.html
http://dojotoolkit.org/reference-guide/1.8/dojox/mobile.html#dojox-mobile
http://dojotoolkit.org/
http://dojotoolkit.org/
http://www.maqetta.org/
http://maqetta.org/downloads/
http://app.maqetta.org/maqetta/app/docs/index.html#install
http://groups.google.com/group/maqetta-users
http://www.ibm.com/developerworks/mydeveloperworks/mydeveloperworks

developerWorks® ibm.com/developerWorks/

Maqetta means mockup, Part 2: Write custom JavaScript
for your Maqetta mobile UI

Page 24 of 24

About the author

Tony Erwin

Tony Erwin is a Software Engineer in IBM's Emerging Internet
Technologies group and a core member of the Maqetta development
team. Tony has been with IBM since 1998 and has extensive UI design
and development experience using a wide variety of technologies and
toolkits. Before joining IBM, Tony earned an MS in Computer Science
from Indiana University and a BS in Computer Science from Rose-
Hulman Institute of Technology.

© Copyright IBM Corporation 2013
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	A richer prototype
	Set up your workspace
	Maqetta's HTML source
	Explore the HTML source

	Update weights.json
	JavaScript in Maqetta
	Simple app.js demo

	Add custom JavaScript
	Required modules
	Referencing widgets

	Change the data store
	Add a placeholder for selected data

	Add a click handler
	Listen for the click

	Monitor transition events
	Details view transitions
	Transition out of detailsView
	Transitions for detailsView_Date
	Transitions for detailsView_Notes
	Main view transitions

	Add weight entries
	Conclusion to Part 2
	Acknowledgments

	Downloads
	Resources
	About the author

